Закон сохранения кинетической энергии. Энергия
Энергия - мера движения материи во всех её формах. Основное свойство всех видов энергии - взаимопревращаемость. Запас энергии, которой обладает тело, определяется той максимальной работой, которую тело может совершать, израсходовав свою энергию полностью. Энергия численно равна максимальной работе, которую тело может совершить, и измеряется в тех же единицах, что и работа. При переходе энергии из одного вида в другой нужно подсчитать энергию тела или системы до и после перехода и взять их разность. Эту разность принято называть работой:
Т. о., физическая величина, характеризующая способность тела совершать работу, называется энергией.
Механическая энергия тела может быть обусловлена либо движением тела с некоторой скоростью, либо нахождением тела в потенциальном поле сил.
Кинетическая энергия.
Энергия, которой обладает тело вследствие своего движения, называется кинетической. Работа, совершенная над телом, равна приращению его кинетической энергии.
Найдем эту работу для случая, когда равнодействующая всех приложенных к телу сил равна .
Работа, совершенная телом за счет кинетической энергии, равна убыли этой энергии.
Потенциальная энергия.
Если в каждой точке пространства на тело действуют другие тела, то говорят, что тело находится в поле сил или силовом поле.
Если линии действия всех этих сил проходит через одну точку - силовой центр поля, - а величина силы зависит только от расстояния до этого центра, то такие силы называются центральными, а поле таких сил - центральным (гравитационное, электрическое поле точечного заряда).
Поле постоянных во времени сил называется стационарным.
Поле, в котором линии действия сил - параллельные прямые, расположенные на одинаковом расстоянии друг от друга - однородное.
Все силы в механике подразделяются на консервативные и неконсервативные (или диссипативные).
Силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положением тела в пространстве, называются консервативными.
Работа консервативных сил по замкнутому пути равна нулю. Все центральные силы являются консервативными. Силы упругой деформации также являются консервативными силами. Если в поле действуют только консервативные силы, поле называется потенциальными (гравитационные поля).
Силы, работа которых зависит от формы пути, называются неконсервативными (силы трения).
Потенциальная энергия - это энергия, которой обладают тела или части тела вследствие их взаимного расположения.
Понятие потенциальной энергии вводится следующим образом. Если тело находится в потенциальном поле сил (например, в гравитационном поле Земли), каждой точке поля можно сопоставить некоторую функцию (называемую потенциальной энергией) так, чтобы работа А 12 , совершаемая над телом силами поля при его перемещении из произвольного положения 1 в другое произвольное положение 2, была равна убыли этой функции на пути 1®2:
,
где и значения потенциальной энергии системы в положениях 1 и 2.
|
В каждой конкретной задаче уславливаются считать потенциальную энергию какого-то определенного положения тела равной нулю, а энергию других положений брать по отношению к нулевому уровню. Конкретный вид функции зависит от характера силового поля и выбора нулевого уровня. Поскольку нулевой уровень выбирается произвольно, может иметь отрицательные значения. Например, если принять за нуль потенциальную энергию тела, находящегося на поверхности Земли, то в поле сил тяжести вблизи земной поверхности потенциальная энергия тела массой m, поднятого на высоту h над поверхностью, равна (рис. 5).
где - перемещение тела под действием силы тяжести;
Потенциальная энергия этого же тела, лежащего на дне ямы глубиной H, равна
В рассмотренном примере речь шла о потенциальной энергии системы Земля-тело.
Потенциальная энергия тяготения - энергиясистемы тел (частиц), обусловленная их взаимным гравитационным притяжением.
Для двух тяготеющих точечных тел с массами m 1 и m 2 потенциальная энергия тяготения равна:
,
где =6,67·10 -11 - гравитационная постоянная,
r - расстояние между центрами масс тел.
Выражение потенциальной энергии тяготения получается из закона тяготения Ньютона, при условии, что для бесконечно удалённых тел гравитационная энергия равна 0. Выражение для гравитационной силы имеет вид:
С другой стороны согласно определению потенциальной энергии:
Тогда .
Потенциальной энергией может обладать не только система взаимодействующих тел, но отдельно взятое тело. В этом случае потенциальная энергия зависит от взаимного расположения частей тела.
Выразим потенциальную энергию упруго деформированного тела.
Потенциальная энергия упругой деформации, если принять, что потенциальная энергия недеформированного тела равна нулю;
где k - коэффициент упругости, x - деформация тела.
В общем случае тело одновременно может обладать и кинетической и потенциальной энергиями. Сумма этих энергий называется полной механической энергией тела: .
Полная механическая энергия системы равна сумме её кинетической и потенциальной энергий. Полная энергия системы равна сумме всех видов энергии, которыми обладает система.
Закон сохранения энергии - результат обобщения многих экспериментальных данных. Идея этого закона принадлежит Ломоносову, изложившему закон сохранения материи и движения, а количественная формулировка дана немецким врачом Майером и естествоиспытателем Гельмгольцем.
Закон сохранения механической энергии : в поле только консервативных сил полная механическая энергия остается постоянной в изолированной системе тел. Наличие диссипативных сил (сил трения) приводит к диссипации (рассеянию) энергии, т.е. превращению её в другие виды энергии и нарушению закона сохранения механической энергии.
Закон сохранения и превращения полной энергии : полная энергия изолированной системы есть величина постоянная.
Энергия никогда не исчезает и не появляется вновь, а лишь превращается из одного вида в другой в эквивалентных количествах. В этом и заключается физическая сущность закона сохранения и превращения энергии: неуничтожимость материи и её движения.
Пример закона сохранения энергии:
В процессе падения потенциальная энергия превращается в кинетическую, а полная энергия, равная mgH , остается постоянной.
Все введенные ранее величины характеризовали только механическое движение. Однако форм движения материи много, постоянно происходит переход от одной формы движения к другой. Необходимо ввести физическую величину, характеризующую движение материи во всех формах её существования, с помощью которой можно было бы количественно сравнивать различные формы движения материи.
Энергия - мера движения материи во всех её формах. Основное свойство всех видов энергии - взаимопревращаемость. Запас энергии, которой обладает тело, определяется той максимальной работой, которую тело может совершать, израсходовав свою энергию полностью. Энергия численно равна максимальной работе, которую тело может совершить, и измеряется в тех же единицах, что и работа. При переходе энергии из одного вида в другой нужно подсчитать энергию тела или системы до и после перехода и взять их разность. Эту разность принято называть работой: .
Т. о., физическая величина, характеризующая способность тела совершать работу, называется энергией.
Механическая энергия тела может быть обусловлена либо движением тела с некоторой скоростью, либо нахождением тела в потенциальном поле сил.
Кинетическая энергия.
Энергия, которой обладает тело вследствие своего движения, называется кинетической. Работа, совершенная над телом, равна приращению его кинетической энергии. Найдем эту работу для случая, когда равнодействующая всех приложенных к телу сил равна .
Работа, совершенная телом за счет кинетической энергии, равна убыли этой энергии.
Потенциальная энергия.
Если в каждой точке пространства на тело воздействуют другие тела с силой, величина которой может быть различна в разных точках, говорят, что тело находится в поле сил или силовом поле.
Если линии действия всех этих сил проходят через одну точку - силовой центр поля, - а величина силы зависит только от расстояния до этого центра, то такие силы называются центральными, а поле таких сил - центральным (гравитационное, электрическое поле точечного заряда).
Поле постоянных во времени сил называется стационарным.
Поле, в котором линии действия сил - параллельные прямые, расположенные на одинаковом расстоянии друг от друга - однородное.
Все силы в механике подразделяются на консервативные и неконсервативные (или диссипативные).
Силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положениями тела в пространстве, называются консервативными.
Работа консервативных сил по замкнутому пути равна нулю. Все центральные силы являются консервативными. Силы упругой деформации также являются консервативными силами. Если в поле действуют только консервативные силы, поле называется потенциальными (гравитационное поле).
Силы, работа которых зависит от формы пути, называются неконсервативными (силы трения).
Потенциальной энергией называют часть общей механической энергии системы, которая определяется только взаимным расположением тел, составляющих систему, и характером сил взаимодействия между ними. Потенциальная энергия - это энергия, которой обладают тела или части тела вследствие их взаимного расположения.
Понятие потенциальной энергии вводится следующим образом. Если тело находится в потенциальном поле сил (например, в гравитационном поле Земли), каждой точке поля можно сопоставить некоторую функцию (называемую потенциальной энергией) так, чтобы работа А 12 , совершаемая над телом силами поля при его перемещении из произвольного положения 1 в другое произвольное положение 2, была равна убыли этой функции на пути 1®2:
где и - значения потенциальной энергии системы в положениях 1 и 2.
Записанное соотношение позволяет определить значение потенциальной энергии с точностью до некоторой неизвестной аддитивной постоянной. Однако, это обстоятельство не имеет никакого значения, т.к. во все соотношения входит только разность потенциальных энергий, соответствующих двум положениям тела. В каждой конкретной задаче уславливаются считать потенциальную энергию какого-то определенного положения тела равной нулю, а энергию других положений брать по отношению к нулевому уровню. Конкретный вид функции зависит от характера силового поля и выбора нулевого уровня. Поскольку нулевой уровень выбирается произвольно, может иметь отрицательные значения. Например, если принять за нуль потенциальную энергию тела, находящегося на поверхности Земли, то в поле сил тяжести вблизи земной поверхности потенциальная энергия тела массой m, поднятого на высоту h над поверхностью, равна (рис. 5).
где - перемещение тела под действием силы тяжести;
Потенциальная энергия этого же тела, лежащего на дне ямы глубиной H, равна
В рассмотренном примере речь шла о потенциальной энергии системы Земля-тело.
Потенциальной энергией может обладать не только система взаимодействующих тел, но отдельно взятое тело. В этом случае потенциальная энергия зависит от взаимного расположения частей тела.
Выразим потенциальную энергию упруго деформированного тела.
Потенциальная энергия упругой деформации, если принять, что потенциальная энергия недеформированного тела равна нулю; k - коэффициент упругости, x - деформация тела.
В общем случае тело одновременно может обладать и кинетической, и потенциальной энергиями. Сумма этих энергий называется полной механической энергией тела: .
Полная механическая энергия системы равна сумме её кинетической и потенциальной энергий. Полная энергия системы равна сумме всех видов энергии, которыми обладает система.
Закон сохранения энергии - результат обобщения многих экспериментальных данных. Идея этого закона принадлежит Ломоносову, изложившему закон сохранения материи и движения, а количественная формулировка дана немецким врачом Майером и естествоиспытателем Гельмгольцем.
Закон сохранения механической энергии : в поле только консервативных сил полная механическая энергия остается постоянной в изолированной системе тел. Наличие диссипативных сил (сил трения) приводит к диссипации (рассеянию) энергии, т.е. превращению её в другие виды энергии и нарушению закона сохранения механической энергии.
Закон сохранения и превращения полной энергии : полная энергия изолированной системы есть величина постоянная.
Энергия никогда не исчезает и не появляется вновь, а лишь превращается из одного вида в другой в эквивалентных количествах. В этом и заключается физическая сущность закона сохранения и превращения энергии: неуничтожимость материи и её движения.
Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.
Кинетическая и потенциальная энергия
Различают два вида энергии – кинетическую и потенциальную.
ОПРЕДЕЛЕНИЕ
Кинетическая энергия – это энергия, которой тело обладает вследствие своего движения:
ОПРЕДЕЛЕНИЕ
Потенциальная энергия – это энергия, которая определяется взаимным расположением тел, а также характером сил взаимодействия между этими телами.
Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе по перемещению тела из данного положения на нулевой уровень:
Потенциальная энергия – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :
Тело может одновременно обладать и кинетической, и потенциальной энергией.
Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):
Закон сохранения энергии
Для замкнутой системы тел справедлив закон сохранения энергии:
В случае, когда на тело (или систему тел) действуют внешние силы, например, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно внешних сил:
Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и , он справедлив не только для , но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.
В наиболее общем виде закон сохранения энергии можно сформулировать так:
- энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.
Примеры решения задач
ПРИМЕР 1
Задание | Пуля, летящая со скоростью 400 м/с, попадает в земляной вал и проходит до остановки 0,5 м. Определить сопротивление вала движению пули, если ее масса 24 г. |
Решение | Сила сопротивления вала – это внешняя сила, поэтому работа этой силы равна изменению кинетической энергии пули:
Так как сила сопротивления вала противоположна направлению движения пули, работа этой силы: Изменение кинетической энергии пули: Таким образом, можно записать: откуда сила сопротивления земляного вала: Переведем единицы в систему СИ: г кг. Вычислим силу сопротивления: |
Ответ | Сила сопротивления вала 3,8 кН. |
ПРИМЕР 2
Задание | Груз массой 0,5 кг падает с некоторой высоты на плиту массой 1 кг, укрепленную на пружине с коэффициентом жесткости 980 Н/м. Определить величину наибольшего сжатия пружины, если в момент удара груз обладал скоростью 5 м/с. Удар неупругий. |
Решение | Запишем для замкнутой системы груз+плита. Так как удар неупругий, имеем:
откуда скорость плиты с грузом после удара: По закону сохранения энергии полная механическая энергия груза вместе с плитой после удара равна потенциальной энергии сжатой пружины: |
Закон сохранения энергии утверждает, что энергия тела никогда не исчезает и не появляется вновь, она может лишь превращаться из одного вида в другой. Этот закон универсален. В различных разделах физики он имеет свою формулировку. Классическая механика рассматривает закон сохранения механической энергии.
Полная механическая энергия замкнутой системы физических тел, между которыми действуют консервативные силы, является величиной постоянной. Так формулируется закон сохранения энергии в механике Ньютона.
Замкнутой, или изолированной, принято считать физическую систему, на которую не действуют внешние силы. В ней не происходит обмена энергией с окружающим пространством, и собственная энергия, которой она обладает, остаётся неизменной, то есть сохраняется. В такой системе действуют только внутренние силы, и тела взаимодействуют друг с другом. В ней могут происходить лишь превращения потенциальной энергии в кинетическую и наоборот.
Простейший пример замкнутой системы – снайперская винтовка и пуля.
Виды механических сил
Силы, которые действуют внутри механической системы, принято разделять на консервативные и неконсервативные.
Консервативными считаются силы, работа которых не зависит от траектории движения тела, к которому они приложены, а определяется только начальным и конечным положением этого тела. Консервативные силы называют также потенциальными . Работа таких сил по замкнутому контуру равна нулю. Примеры консервативных сил – сила тяжести, сила упругости .
Все остальные силы называются неконсервативными . К ним относятся сила трения и сила сопротивления . Их называют также диссипативными силами. Эти силы при любых движениях в замкнутой механической системе совершают отрицательную работу, и при их действии полная механическая энергия системы убывает (диссипирует). Она переходит в другие, не механические виды энергии, например, в теплоту. Поэтому закон сохранения энергии в замкнутой механической системе может выполняться, только если неконсервативные силы в ней отсутствуют.
Полная энергия механической системы состоит из кинетической и потенциальной энергии и является их суммой. Эти виды энергий могут превращаться друг в друга.
Потенциальная энергия
Потенциальную энергию называют энергией взаимодействия физических тел или их частей между собой. Она определяется их взаимным расположением, то есть, расстоянием между ними, и равна работе, которую нужно совершить, чтобы переместить тело из точки отсчёта в другую точку в поле действия консервативных сил.
Потенциальную энергию имеет любое неподвижное физическое тело, поднятое на какую-то высоту, так как на него действует сила тяжести, являющаяся консервативной силой. Такой энергией обладает вода на краю водопада, санки на вершине горы.
Откуда же эта энергия появилась? Пока физическое тело поднимали на высоту, совершили работу и затратили энергию. Вот эта энергия и запаслась в поднятом теле. И теперь эта энергия готова для совершения работы.
Величина потенциальной энергии тела определяется высотой, на которой находится тело относительно какого-то начального уровня. За точку отсчёту мы можем принять любую выбранную нами точку.
Если рассматривать положение тела относительно Земли, то потенциальная энергия тела на поверхности Земли равна нулю. А на высоте h она вычисляется по формуле:
Е п = m ɡ h ,
где m – масса тела
ɡ - ускорение свободного падения
h – высота центра масс тела относительно Земли
ɡ = 9,8 м/с 2
При падении тела c высоты h 1 до высоты h 2 сила тяжести совершает работу. Эта работа равна изменению потенциальной энергии и имеет отрицательное значение, так как величина потенциальной энергии при падении тела уменьшается.
A = - ( E п2 – E п1) = - ∆ E п ,
где E п1 – потенциальная энергия тела на высоте h 1 ,
E п2 - потенциальная энергия тела на высоте h 2 .
Если же тело поднимают на какую-то высоту, то совершают работу против сил тяжести. В этом случае она имеет положительное значение. А величина потенциальной энергии тела увеличивается.
Потенциальной энергией обладает и упруго деформированное тело (сжатая или растянутая пружина). Её величина зависит от жёсткости пружины и от того, на какую длину её сжали или растянули, и определяется по формуле:
Е п = k·(∆x) 2 /2 ,
где k – коэффициент жёсткости,
∆x – удлинение или сжатие тела.
Потенциальная энергии пружины может совершать работу.
Кинетическая энергия
В переводе с греческого «кинема» означает «движение». Энергия, которой физическое тело получает вследствие своего движения, называется кинетической. Её величина зависит от скорости движения.
Катящийся по полю футбольный мяч, скатившиеся с горы и продолжающие двигаться санки, выпущенная из лука стрела – все они обладают кинетической энергией.
Если тело находится в состоянии покоя, его кинетическая энергия равна нулю. Как только на тело подействует сила или несколько сил, оно начнёт двигаться. А раз тело движется, то действующая на него сила совершает работу. Работа силы, под воздействием которой тело из состояния покоя перейдёт в движение и изменит свою скорость от нуля до ν , называется кинетической энергией тела массой m .
Если же в начальный момент времени тело уже находилось в движении, и его скорость имела значение ν 1 , а в конечный момент она равнялась ν 2 , то работа, совершённая силой или силами, действующими на тело, будет равна приращению кинетической энергии тела.
∆ E k = E k 2 - E k 1
Если направление силы совпадает с направлением движения, то совершается положительная работа, и кинетическая энергия тела возрастает. А если сила направлена в сторону, противоположную направлению движения, то совершается отрицательная работа, и тело отдаёт кинетическую энергию.
Закон сохранения механической энергии
Е k 1 + Е п1 = Е k 2 + Е п2
Любое физическое тело, находящееся на какой-то высоте, имеет потенциальную энергию. Но при падении оно эту энергию начинает терять. Куда же она девается? Оказывается, она никуда не исчезает, а превращается в кинетическую энергию этого же тела.
Предположим, на какой-то высоте неподвижно закреплён груз. Его потенциальная энергия в этой точке равна максимальному значению. Если мы отпустим его, он начнёт падать с определённой скоростью. Следовательно, начнёт приобретать кинетическую энергию. Но одновременно начнёт уменьшаться его потенциальная энергия. В точке падения кинетическая энергия тела достигнет максимума, а потенциальная уменьшится до нуля.
Потенциальная энергия мяча, брошенного с высоты, уменьшается, а кинетическая энергия возрастает. Санки, находящиеся в состоянии покоя на вершине горы, обладают потенциальной энергией. Их кинетическая энергия в этот момент равна нулю. Но когда они начнут катиться вниз, кинетическая энергия будет увеличиваться, а потенциальная уменьшаться на такую же величину. А сумма их значений останется неизменной. Потенциальная энергия яблока, висящего на дереве, при падении превращается в его кинетическую энергию.
Эти примеры наглядно подтверждают закон сохранения энергии, который говорит о том, что полная энергия механической системы является величиной постоянной . Величина полной энергии системы не меняется, а потенциальная энергия переходит в кинетическую и наоборот.
На какую величину уменьшится потенциальная энергия, на такую же увеличится кинетическая. Их сумма не изменится.
Для замкнутой системы физических тел справедливо равенство
E k1 + E п1 = E k2 + E п2
,
где E k1 , E п1
- кинетическая и потенциальная энергии системы до какого-либо взаимодействия, E k2 , E п2
- соответствующие энергии после него.
Процесс преобразования кинетической энергии в потенциальную и наоборот можно увидеть, наблюдая за раскачивающимся маятником.
Нажать на картинку
Находясь в крайне правом положении, маятник словно замирает. В этот момент его высота над точкой отсчёта максимальна. Следовательно, максимальна и потенциальная энергия. А кинетическая равна нулю, так как он не движется. Но в следующее мгновение маятник начинает движение вниз. Возрастает его скорость, а, значит, увеличивается кинетическая энергия. Но уменьшается высота, уменьшается и потенциальная энергия. В нижней точке она станет равной нулю, а кинетическая энергия достигнет максимального значения. Маятник пролетит эту точку и начнёт подниматься вверх налево. Начнёт увеличиваться его потенциальная энергия, а кинетическая будет уменьшаться. И т.д.
Для демонстрации превращений энергии Исаак Ньютон придумал механическую систему, которую называют колыбелью Ньютона или шарами Ньютона .
Нажать на картинку
Если отклонить в сторону, а затем отпустить первый шар, то его энергия и импульс передадутся последнему через три промежуточных шара, которые останутся неподвижными. А последний шар отклонится с такой же скоростью и поднимется на такую же высоту, что и первый. Затем последний шар передаст свою энергию и импульс через промежуточные шары первому и т. д.
Шар, отведенный в сторону, обладает максимальной потенциальной энергией. Его кинетическая энергия в этот момент нулевая. Начав движение, он теряет потенциальную энергию и приобретает кинетическую, которая в момент столкновения со вторым шаром достигает максимума, а потенциальная становится равной нулю. Далее кинетическая энергия передаётся второму, затем третьему, четвёртому и пятому шарам. Последний, получив кинетическую энергию, начинает двигаться и поднимается на такую же высоту, на которой находился первый шар в начале движения. Его кинетическая энергия в этот момент равна нулю, а потенциальная равна максимальному значению. Далее он начинает падать и точно так же передаёт энергию шарам в обратной последовательности.
Так продолжается довольно долго и могло бы продолжаться до бесконечности, если бы не существовало неконсервативных сил. Но в реальности в системе действуют диссипативные силы, под действием которых шары теряют свою энергию. Постепенно уменьшается их скорость и амплитуда. И, в конце концов, они останавливаются. Это подтверждает, что закон сохранения энергии выполняется только в отсутствии неконсервативных сил.
За счет его нахождения в поле действия сил. Другое определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы . Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином .
Единицей измерения энергии в СИ является Джоуль .
Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.
Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными .
Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.
Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.
Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя ; таким образом, кинетическая энергия - часть полной энергии, обусловленная движением .
Кинетическая энергия
Рассмотрим систему, состоящую из одной частицы, и запишем уравнение движения :
Есть результирующая всех сил , действующих на тело. Скалярно умножим уравнение на перемещение частицы . Учитывая, что , Получим:
- момент инерции тела
- угловая скорость тела.
Закон сохранения энергии.
Зако́н сохране́ния эне́ргии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.
С фундаментальной точки зрения, согласно теореме Нётер , закон сохранения энергии является следствием однородности времени и в этом смысле является универсальным, то есть присущим системам самой разной физической природы. Другими словами, для каждой конкретной замкнутой системы, вне зависимости от её природы можно определить некую величину, называемую энергией, которая будет сохраняться во времени. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря различающимся для разных систем.
Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики .
Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то более правильным является его именование не законом , а принципом сохранения энергии.
С математической точки зрения закон сохранения энергии эквивалентен утверждению, что система дифференциальных уравнений , описывающая динамику данной физической системы, обладает первым интегралом движения, связанным с