Школьная энциклопедия. Кинетическая и потенциальная энергия

Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем:

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами.

Закон сохранения механической энергии можно сформулировать так: в консервативных системах полная механическая энергия сохраняется.

Закон сохранения механической энергии связан с однородностью времени. Однородность времени проявляется в том, что физические законы инвариантны относительно выбора начала отсчета времени.

Существует еще один вид систем - диссипативные системы , в которых механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс получил название диссипации (или рассеяния) энергии .

В консервативных системах полная механическая энергия остается постоянной. Могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах так, что полная энергия остается неизменной.

Этот закон не есть просто закон количественного сохранения энергии, а закон сохранения и превращения энергии, выражающий и качественную сторону взаимного превращения различных форм движения друг в друга.

Закон сохранения и превращения энергии - фундаментальный закон природы , он справедлив как для систем макроскопических тел, так и для систем микротел.

В системе, в которой действуют также неконсервативные силы , например, силы трения, полная механическая энергия системы не сохраняется . Однако при «исчезновении» механической энергии всегда возникает эквивалентное количество энергии другого вида.

14. Момент инерции твердого тела. Момент импульса. Теорема Штейнера.

Моментом инерции системы (тела) относительно данной оси называется физическая величина, равная сумме произведений масс n материальных точек системы на квадраты их расстоянии до рассматриваемой оси:

Суммирование производится по всем элементарным массам m, на которые разбивается тело.

В случае непрерывного распределения масс эта сумма сводится к интегралу: где интегрирование производится по всему объему тела.

Величина r в этом случае есть функция положения точки с координатами х, у, z. Момент инерции - величина аддитивная : момент инерции тела относительно некоторой оси равен сумме моментов инерции частей тела относительно той же оси.

Если известен момент инерции тела относительно оси, проходящей через его центр масс, то момент инерции относительно любой другой параллельной оси определяется теоремой Штейнера :

момент инерции тела J относительно произвольной оси равен моменту его инерции Jс относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы тела на квадрат расстояния а между осями:

Примеры моментов инерции некоторых тел (тела считаются однородными, m - масса тела):

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку А;

р = mv - импульс материальной точки;

L - псевдовектор, его направление совпадает с направлением поступательного движения правого винта при его вращении от к.

Модуль вектора момента импульса:

где а - угол между векторами r и р;

l - плечо вектора р относительно точки О.

Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая отдельная точка тела движется по окружности постоянного радиуса r, с некоторой скоростью Vi. Скорость Vi и импульс mV перпендикулярны этому радиусу, т. е. радиус является плечом вектора . Поэтому момент импульса отдельной частицы равен:

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц:

Используя формулу получим, что момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость:

Данный видеоурок предназначен для самостоятельного ознакомления с темой «Закон сохранения механической энергии». Вначале дадим определение полной энергии и замкнутой системы. Затем сформулируем Закон сохранения механической энергии и рассмотрим, в каких областях физики можно его применять. Также мы дадим определение работы и научимся её определять, рассмотрев связанные с ней формулы.

Темой урока является один из фундаментальных законов природы - закон сохранения механической энергии .

Мы ранее говорили о потенциальной и кинетической энергии, а также о том, что тело может обладать вместе и потенциальной, и кинетической энергией. Прежде чем говорить о законе сохранения механической энергии вспомним, что такое полная энергия. Полной механической энергией называют сумму потенциальной и кинетической энергий тела.

Также вспомним, что называют замкнутой системой. Замкнутая система - это такая система, в которой находится строго определенное количество взаимодействующих между собой тел и никакие другие тела извне на эту систему не действуют.

Когда мы определились с понятием полной энергии и замкнутой системы, можно говорить о законе сохранения механической энергии. Итак, полная механическая энергия в замкнутой системе тел, взаимодействующих друг с другом посредством сил тяготения или сил упругости (консервативных сил), остается неизменной при любом движении этих тел.

Мы уже изучали закон сохранения импульса (ЗСИ):

Очень часто случается так, что поставленные задачи можно решить только с помощью законов сохранения энергии и импульса.

Рассмотреть сохранение энергии удобно на примере свободного падения тела с некоторой высоты. Если некоторое тело находится в состоянии покоя на некоторой высоте относительно земли, то это тело обладает потенциальной энергией. Как только тело начинает свое движение, высота тела уменьшается, уменьшается и потенциальная энергия. При этом начинает нарастать скорость, появляется энергия кинетическая. Когда тело приблизилось к земле, то высота тела равна 0, потенциальная энергия тоже равна 0, а максимальной будет являться кинетическая энергия тела. Вот здесь и просматривается превращение потенциальной энергии в кинетическую (рис. 1). То же самое можно сказать о движении тела наоборот, снизу вверх, когда тело бросают вертикально вверх.

Рис. 1. Свободное падение тела с некоторой высоты

Дополнительная задача 1. «О падении тела с некоторой высоты»

Задача 1

Условие

Тело находится на высоте от поверхности Земли и начинает свободно падать. Определите скорость тела в момент соприкосновения с землей.

Решение 1:

Начальная скорость тела . Нужно найти .

Рассмотрим закон сохранения энергии.

Рис. 2. Движение тела (задача 1)

В верхней точке тело обладает только потенциальной энергией: . Когда тело приблизится к земле, то высота тела над землей будет равна 0, а это означает, что потенциальная энергия у тела исчезла, она превратилась в кинетическую:

Согласно закону сохранения энергии можем записать:

Масса тела сокращается. Преобразуя указанное уравнение, получаем: .

Окончательный ответ будет: . Если подставить все значение, то получим:.

Ответ: .

Пример оформления решения задачи:

Рис. 3. Пример оформления решения задачи № 1

Данную задачу можно решить еще одним способом, как движение по вертикали с ускорением свободного падения.

Решение 2 :

Запишем уравнение движения тела в проекции на ось :

Когда тело приблизится к поверхности Земли, его координата будет равна 0:

Перед ускорением свободного падения стоит знак «-», поскольку оно направлено против выбранной оси .

Подставив известные величины, получаем, что тело падало на протяжении времени . Теперь запишем уравнение для скорости:

Полагая ускорение свободного падения равным получаем:

Знак минус означает, что тело движется против направления выбранной оси.

Ответ: .

Пример оформления решения задачи № 1 вторым способом.

Рис. 4. Пример оформления решения задачи № 1 (способ 2)

Также для решения данной задачи можно было воспользоваться формулой, которая не зависит от времени:

Конечно, нужно отметить, что данный пример мы рассмотрели с учетом отсутствия сил трения, которые в реальности действуют в любой системе. Обратимся к формулам и посмотрим, как записывается закон сохранения механической энергии:

Дополнительная задача 2

Тело свободно падает с высоты . Определите, на какой высоте кинетическая энергия равна трети потенциальной ().

Рис. 5. Иллюстрация к задаче № 2

Решение:

Когда тело находится на высоте , оно обладает потенциальной энергией, и только потенциальной. Эта энергия определяется формулой: . Это и будет полная энергия тела.

Когда тело начинает двигаться вниз, уменьшается потенциальная энергия, но вместе с тем нарастает кинетическая. На высоте, которую нужно определить, у тела уже будет некоторая скорость V. Для точки, соответствующей высоте h, кинетическая энергия имеет вид:

Потенциальная энергия на этой высоте будет обозначена следующим образом: .

По закону сохранения энергии, у нас полная энергия сохраняется. Эта энергия остается величиной постоянной. Для точки мы можем записать следующее соотношение: (по З.С.Э.).

Вспоминая, что кинетическая энергия по условию задачи составляет , можем записать следующее: .

Обратите внимание: масса и ускорение свободного падения сокращается, после несложных преобразований мы получаем, что высота, на которой такое соотношение выполняется, составляет .

Ответ:

Пример оформления задачи 2.

Рис. 6. Оформление решения задачи № 2

Представьте себе, что тело в некоторой системе отсчета обладает кинетической и потенциальной энергией. Если система замкнутая, то при каком-либо изменении произошло перераспределение, превращение одного вида энергии в другой, но полная энергия остается по своему значению той же самой (рис. 7).

Рис. 7. Закон сохранения энергии

Представьте себе ситуацию, когда по горизонтальной дороге движется автомобиль. Водитель выключает мотор и продолжает движение уже с выключенным мотором. Что в этом случае происходит (рис. 8)?

Рис. 8. Движение автомобиля

В данном случае автомобиль обладает кинетической энергией. Но вы прекрасно знаете, что с течением времени автомобиль остановится. Куда девалась в этом случае энергия? Ведь потенциальная энергия тела в данном случае тоже не изменилась, она была какой-то постоянной величиной относительно Земли. Как произошло изменение энергии? В данном случае энергия пошла на преодоление сил трения. Если в системе встречается трение, то оно также влияет на энергию этой системы. Посмотрим, как записывается в данном случае изменение энергии.

Изменяется энергия, и это изменение энергии определяется работой против силы трения. Определить работу силы трения мы можем с помощью формулы, которая известна из 7 класса (сила и перемещение направлены противоположно):

Итак, когда мы говорим об энергии и работе, то должны понимать, что каждый раз мы должны учитывать и то, что часть энергии расходуется на преодоление сил трения. Совершается работа по преодолению сил трения. Работа является величиной, которая характеризует изменение энергии тела.

В заключение урока хотелось бы сказать, что работа и энергия по сути своей связанные величины через действующие силы.

Дополнительная задача 3

Два тела - брусок массой и пластилиновый шарик массой - движутся навстречу друг другу с одинаковыми скоростями (). После столкновения пластилиновый шарик прилип к бруску, два тела продолжают движение вместе. Определить, какая часть механической энергии превратилась во внутреннюю энергию этих тел, с учетом того что масса бруска в 3 раза больше массы пластилинового шарика ().

Решение:

Изменение внутренней энергии можно обозначить . Как вы знаете, существует несколько видов энергии. Кроме механической, существует еще и тепловая, внутренняя энергия.

Принцип сохранения энергии - абсолютно точен, не зафиксировано случаев его нарушения. Это фундаментальный закон природы, из которого вытекают другие. Поэтому важно правильно понимать его и уметь применять на практике.

Фундаментальный принцип

Общего определения для понятия энергии не существует. Выделяют разные ее виды: кинетическую, тепловую, потенциальную, химическую. Но сути это не проясняет. Энергия - некая количественная характеристика, которая, чтобы бы не происходило, остается постоянной для всей системы. Можно наблюдать, как скользящая шайба останавливается, и заявить: энергия изменилась! На самом деле нет: механическая энергия перешла в тепловую, часть которой рассеялась в воздухе, а часть ушла на плавление снега.

Рис. 1. Переход работы, затрачиваемой на преодоление трения, в тепловую энергию.

Математик, Эмми Нетер, сумела доказать, что постоянство энергии - проявление однородности времени. Эта величина инвариантна относительно переноса вдоль временной координаты, поскольку законы природы с течением времени не меняются.

Будем рассматривать полную механическую энергию (E) и ее виды - кинетическую (T) и потенциальную (V). Если сложить их, то получим выражение для полной механической энергии:

$E = T + V_{(q)}$

Записывая потенциальную энергию, как $V_{(q)}$, указываем, что она зависит исключительно от конфигурации системы. Под q понимаются обобщенные координаты. Это могут быть x, y, z в прямоугольной декартовой системе координат, а могут быть любые другие. Чаще всего имеют дело с декартовой системой.

Рис. 2. Потенциальная энергия в поле тяжести.

Математическая формулировка закона сохранения энергии в механике выглядит так:

$\frac {d}{dt}(T+V_{(q)}) = 0$ – производная полной механической энергии по времени равна нулю.

В привычном, интегральном виде, формула закона сохранения энергии записывается так:

В механике на закон накладываются ограничения: силы, действующие на систему, должны быть консервативным (их работа зависит только от конфигурации системы). При наличии неконсервативных сил, например, трения, механическая энергия переходит в другие виды энергии (тепловую, электрическую).

Термодинамика

Попытки создать вечный двигатель особенно характерны для 18-19 веков - эпохи, когда были сделаны первые паровые машины. Неудачи, тем не менее, привели к положительному результату: было сформулировано первое начало термодинамики:

$Q = \Delta U + A$ – затрачиваемое тепло расходует на совершение работы и на изменение внутренней энергии. Это ни что иное, как закон сохранения энергии, но для тепловых двигателей.

Рис. 3. Схема паровой машины.

Задачи

Груз массой 1 кг, подвешенный на нити L=2 м, отклонили так, что высота поднятия оказалась равной 0,45 м, и отпустили без начальной скорости. Какова будет сила натяжения нити в нижней точке?

Решение:

Запишем второй закон Ньютона в проекции на ось y в момент, когда тело проходит нижнюю точку:

$ma = T – mg$, но, так как $a = \frac {v^2}{L}$, его можно переписать в новом виде:

$m \cdot \frac {v^2}{L} = T – mg$

Теперь запишем закон сохранения энергии, учитывая, что в начальном положении кинетическая энергия равна нулю, а в нижней точке - потенциальная энергия равна нулю:

$m \cdot g \cdot h = \frac {m \cdot v^2}{2}$

Тогда сила натяжения нити равна:

$T = \frac {m \cdot 2 \cdot g \cdot h}{L} + mg = 10 \cdot (0,45 + 1) = 14,5 \: Н$

Что мы узнали?

В ходе урока рассмотрели фундаментальное свойство природы (однородность времени), из которого вытекает закон сохранения энергии, рассмотрели примеры этого закона в разных разделах физики. Для закрепления материала решили задачу с маятником.

Тест по теме

Оценка доклада

Средняя оценка: 4.4 . Всего получено оценок: 252.

Энергия – скалярная величина. В системе СИ единицей измерения энергии является Джоуль.

Кинетическая и потенциальная энергия

Различают два вида энергии – кинетическую и потенциальную.

ОПРЕДЕЛЕНИЕ

Кинетическая энергия – это энергия, которой тело обладает вследствие своего движения:

ОПРЕДЕЛЕНИЕ

Потенциальная энергия – это энергия, которая определяется взаимным расположением тел, а также характером сил взаимодействия между этими телами.

Потенциальная энергия в поле тяготения Земли – это энергия, обусловленная гравитационным взаимодействием тела с Землей. Она определяется положением тела относительно Земли и равна работе по перемещению тела из данного положения на нулевой уровень:

Потенциальная энергия – энергия, обусловленная взаимодействием частей тела друг с другом. Она равна работе внешних сил по растяжению (сжатию) недеформированной пружины на величину :

Тело может одновременно обладать и кинетической, и потенциальной энергией.

Полная механическая энергия тела или системы тел равна сумме кинетической и потенциальной энергий тела (системы тел):

Закон сохранения энергии

Для замкнутой системы тел справедлив закон сохранения энергии:

В случае, когда на тело (или систему тел) действуют внешние силы, например, закон сохранения механической энергии не выполняется. В этом случае изменение полной механической энергии тела (системы тел) равно внешних сил:

Закон сохранения энергии позволяет установить количественную связь между различными формами движения материи. Так же, как и , он справедлив не только для , но и для всех явлений природы. Закон сохранения энергии говорит о том, что в энергию в природе нельзя уничтожить так же, как и создать из ничего.

В наиболее общем виде закон сохранения энергии можно сформулировать так:

  • энергия в природе не исчезает и не создается вновь, а только превращается из одного вида в другой.

Примеры решения задач

ПРИМЕР 1

Задание Пуля, летящая со скоростью 400 м/с, попадает в земляной вал и проходит до остановки 0,5 м. Определить сопротивление вала движению пули, если ее масса 24 г.
Решение Сила сопротивления вала – это внешняя сила, поэтому работа этой силы равна изменению кинетической энергии пули:

Так как сила сопротивления вала противоположна направлению движения пули, работа этой силы:

Изменение кинетической энергии пули:

Таким образом, можно записать:

откуда сила сопротивления земляного вала:

Переведем единицы в систему СИ: г кг.

Вычислим силу сопротивления:

Ответ Сила сопротивления вала 3,8 кН.

ПРИМЕР 2

Задание Груз массой 0,5 кг падает с некоторой высоты на плиту массой 1 кг, укрепленную на пружине с коэффициентом жесткости 980 Н/м. Определить величину наибольшего сжатия пружины, если в момент удара груз обладал скоростью 5 м/с. Удар неупругий.
Решение Запишем для замкнутой системы груз+плита. Так как удар неупругий, имеем:

откуда скорость плиты с грузом после удара:

По закону сохранения энергии полная механическая энергия груза вместе с плитой после удара равна потенциальной энергии сжатой пружины:

Закон сохранения энергии - один из наиболее важных законов, согласно которому физическая величина - энергия сохраняется в изолированной системе. Этому закону подчиняются все без исключения известные процессы в природе. В изолированной системе энергия может только превращаться из одной формы в другую, но ее количество остается постоянным.

Для того, чтоб понять что же представляет из себя закон и откуда это получается возьмем тело массой m, которое уроним на Землю. В точке 1 тело у нас находится на высоте h и покоится (скорость равна 0). В точке 2 тело тело имеет некоторую скорость v и находится на расстоянии h-h1. В точке 3 тело имеет максимальную скорость и оно почти лежит на нашей Земле, то есть h=0

Закон сохранения энергии

В точке 1 тело имеет только потенциальную энергию, так как скорость тела равно 0,так что полная механическая энергия равна.

После того как мы тело отпустили, оно стало падать. При падении потенциальная энергия тела уменьшается, так как уменьшается высота тела над Землей, а его кинетическая энергия увеличивается, так как увеличивается скорость тела. На участке 1-2 равном h1 потенциальная энергия будет равна

А кинетическая энергия будет равная в тот момент

Скорость тела в точке 2):

Чем ближе тело становится к Земле, тем меньше его потенциальная энергия, но в тот же момент увеличивается скорость тела, а из-за этого и кинетическая энергия. То есть в точке 2 работает закон сохранения энергии: потенциальная энергия уменьшается, кинетическая растет.

В точке 3 (на поверхности Земли) потенциальная энергия равна нулю (так как h = 0), а кинетическая максимальна

(где v3 - скорость тела в момент падения на Землю). Так как

То кинетическая энергия в точке 3 будет равна Wk=mgh. Следовательно, в точке 3 полная энергия тела W3=mgh и равна потенциальной энергии на высоте h. Конечная формула закона сохранения механической энергии будет иметь вид:

Формула выражает закон сохранения энергии в замкнутой системе, в которой действуют только консервативные силы: полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию и обратно.

В Формуле мы использовали:

W - Полная энергия тела

Потенциальная энергия тела

Кинетическая энергия тела

m - Масса тела

g - Ускорение свободного падения

h - Высота на которой находится тело

\upsilon - Скорость тела