Абсолютная сходимость рядов. Знакочередующиеся и знакопеременные ряды и их сходимость

Пример 2.

Исследовать, сходится ли ряд .

Поскольку

То ряд сходится.

Интегральный признак сходимости

Интегральный признак сходимости выражается следующей теоремой

Теорема 1.8.

Дан ряд с положительными членами

Если при функция непрерывна, положительна и не возрастает, а в точках принимает значения , то ряд (1.23) и несобственный интеграл (1.24) одновременно сходятся или расходятся.

Доказательство.

Если , то , откуда

;

Если интеграл (1.24) сходится и , то при любом натуральном . Следовательно,

.

Так как монотонно возрастающая и ограниченная последовательность, то существует , т.е. ряд (1.23) также сходится. Если ряд (1.23) сходится и , то при любом .

Из равенства (1.26) следует, что при любом . Несобственный интеграл также сходится.

С помощью интегрального признака можно доказать, что ряд

(1.27)

где любое вещественное число, сходится при и расходится при .

Действительно, сходится при и расходится при .

Знакочередующиеся ряды. Признак Лейбница

Знакочередующимся рядом называется ряд, у которого любые два члена с номерами и имеют противоположные знаки, т.е. ряд вида

(1.30)

Доказательство.

Рассмотрим частичные суммы ряда (1.28) с четными и нечетными номерами:

Преобразуем первую из этих сумм:

В силу условия (1.29) разность в каждой скобке положительна, поэтому сумма и для всех . Итак, последовательность четных частичных сумм является монотонно возрастающей и ограниченной. Она имеет предел, который обозначим через , т.е. . Поскольку , то, принимая во внимание предыдущее равенство и условие (1.30), получаем



Итак, последовательность частичных сумм данного ряда соответственно с четными и нечетными номерами имеют один и тот же предел . Отсюда следует, что последовательность всех частичных сумм ряда имеет предел ; т.е. ряд сходится.

Пример.

Исследовать, сходится ли ряд

(1.31)

Этот ряд является знакочередующимся. Он сходится, поскольку удовлетворяет условиям теоремы

Оценка остатка знакочередующегося ряда определяется с помощью следующей теоремы.

Теорема 1.10.

Сумма остатка знакочередующегося ряда, удовлетворяющего условиям теоремы Лейбница, имеет знак первого оставшегося члена и не превосходит его по модулю.

Доказательство.

Рассмотрим остаток ряда (1.28) после членов. Пусть его сумма, -я частичная сумма, тогда

Так как выполнены условия теоремы 1.9, то и при всех , т.е. , откуда

или

Аналогично доказывается, что сумма остатка ряда после членов удовлетворяет условиям , т.е. и .

Следовательно, независимо от четности или нечетности

Рассмотрим ряд, составленный из модулей членов данного ряда:

(1.34)

Теорема 1.11.

Если ряд (1.34) сходится, то сходится и ряд (1.33).

Доказательство.

Поскольку ряд (1.34) сходится, то в силу критерия Коши (теорема 1.1) для любого существует такой номер , то при всех и любом целом выполняется неравенство

.

То . Это означает, что ряд (1.33) также сходится.

Замечание.

Из сходимости ряда (1.33) не следует сходимость ряда (1.34). Например, ряд сходится (см. п. 1.6), а ряд из модулей его членов расходится (гармонический ряд, см. п. 1.2).

абсолютно сходящимся, если сходится ряд из модулей его членов. Например, ряд

является абсолютно сходящимся, поскольку сходится ряд из модулей его членов, т.е. ряд (геометрическая прогрессия со знаменателем , ).

Знакопеременный ряд называется неабсолютно сходящимся (условно сходящимся), если он сходится, а ряд из модулей его членов расходится. Например, ряд является неабсолютно сходящимся (см. замечание).

Действия над рядами.

Произведением ряда

Теорема 1.12.

Если ряд (1.35) сходится, то ряд (1.36) также сходится, причем

(1.37)

Доказательство.

Обозначим через и - е частичные суммы рядов (1.35) и (1.36), т.е.

Очевидно, . Если ряд (1.35) сходится и его сумма равна , т.е. , , то

Кроме ряда (1.35) рассмотрим ряд

также сходится абсолютно и его сумма равна

Замечание.

Правила действия над рядами не всегда совпадают с правилами действий над конечными суммами. В частности, в конечных суммах можно произвольно менять порядок слагаемых, как угодно группировать члены, сумма от этого не изменится. Слагаемые конечной суммы можно складывать в обратном порядке, для ряда такой возможности нет, ибо у него не существует последнего члена.

В ряде не всегда можно группировать члены. Например, ряд

является расходящимся, так как

и нет предела его частичных сумм. После группировки членов

получаем сходящийся ряд, его сумма равна нулю. При другой группировке членов

получаем сходящийся ряд, сумма которого равна единице.

Приведем без доказательства две теоремы.


Теорема 1.14.

Перестановка членов абсолютно сходящегося ряда не нарушает его сходимости, сумма ряда при этом остается прежней.

Теорема 1.15.

Если ряд сходится неабсолютно, то путём надлежащей перестановки его членов всегда можно придать сумме ряда произвольное значение и даже сделать ряд расходящимся.

Ряд

Пусть задан ряд ∑ a n {\displaystyle \sum a_{n}} и α = lim ¯ n → ∞ ⁡ | a n | n {\displaystyle \alpha =\varlimsup _{n\to \infty }{\sqrt[{n}]{|a_{n}|}}} . Тогда

Утверждение о сходимости в признаках Коши и Даламбера выводится из сравнения с геометрической прогрессией (со знаменателями lim ¯ n → ∞ ⁡ | a n + 1 a n | {\displaystyle \varlimsup _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|} и α {\displaystyle \alpha } соответственно), о расходимости - из того, что общий член ряда не стремится к нулю.

Признак Коши сильнее признака Даламбера в том смысле, что если признак Даламбера указывает на сходимость, то и признак Коши указывает на сходимость; если признак Коши не позволяет сделать вывода о сходимости, то и признак Даламбера тоже не позволяет сделать никаких выводов; существуют ряды, для которых признак Коши указывает на сходимость, а признак Даламбера не указывает на сходимость.

Интегральный признак Коши - Маклорена

Пусть задан ряд ∑ n = 1 ∞ a n , a n ⩾ 0 {\displaystyle \sum _{n=1}^{\infty }a_{n},a_{n}\geqslant 0} и функция f (x) : R → R {\displaystyle f(x):\mathbb {R} \to \mathbb {R} } такая, что:

Тогда ряд ∑ n = 1 ∞ a n {\displaystyle \sum _{n=1}^{\infty }a_{n}} и интеграл ∫ 1 ∞ f (x) d x {\displaystyle \int \limits _{1}^{\infty }f(x)dx} сходятся или расходятся одновременно, причем ∀ k ⩾ 1 ∑ n = k ∞ a n ⩾ ∫ k ∞ f (x) d x ⩾ ∑ n = k + 1 ∞ a n {\displaystyle \forall k\geqslant 1\ \sum _{n=k}^{\infty }a_{n}\geqslant \int \limits _{k}^{\infty }f(x)dx\geqslant \sum _{n=k+1}^{\infty }a_{n}}

Признак Раабе

Пусть задан ряд ∑ a n {\displaystyle \sum a_{n}} , a n > 0 {\displaystyle a_{n}>0} и R n = n (a n a n + 1 − 1) {\displaystyle R_{n}=n\left({\frac {a_{n}}{a_{n+1}}}-1\right)} .

Признак Раабе основан на сравнении с обобщенным гармоническим рядом

Действия над рядами

Примеры

Рассмотрим ряд 1 2 + 1 3 + 1 2 2 + 1 3 2 + 1 2 3 + . . . {\displaystyle {\frac {1}{2}}+{\frac {1}{3}}+{\frac {1}{2^{2}}}+{\frac {1}{3^{2}}}+{\frac {1}{2^{3}}}+...} . Для этого ряда:

Таким образом, признак Коши указывает на сходимость, признак Даламбера же не позволяет сделать никаких заключений.

Рассмотрим ряд ∑ n = 1 ∞ 2 n − (− 1) n {\displaystyle \sum _{n=1}^{\infty }2^{n-(-1)^{n}}}

Таким образом, признак Коши указывает на расходимость, признак Даламбера же не позволяет сделать никаких заключений.

Ряд ∑ n = 1 ∞ 1 n α {\displaystyle \sum _{n=1}^{\infty }{\frac {1}{n^{\alpha }}}} сходится при α > 1 {\displaystyle \alpha >1} и расходится при α ⩽ 1 {\displaystyle \alpha \leqslant 1} , однако:

Таким образом, признаки Коши и Даламбера не позволяют сделать никаких выводов.

Ряд ∑ n = 1 ∞ (− 1) n n {\displaystyle \sum _{n=1}^{\infty }{\frac {(-1)^{n}}{n}}} сходится условно по признаку Лейбница , но не абсолютно, так как гармонический ряд ∑ n = 1 ∞ | (− 1) n n | = ∑ n = 1 ∞ 1 n {\displaystyle \sum _{n=1}^{\infty }\left|{\frac {(-1)^{n}}{n}}\right|=\sum _{n=1}^{\infty }{\frac {1}{n}}} расходится.

, неограничена в левой окрестности точки b {\displaystyle b} . Несобственный интеграл второго рода ∫ a b f (x) d x {\displaystyle \int \limits _{a}^{b}f(x)dx} называется абсолютно сходящимся , если сходится интеграл ∫ a b | f (x) | d x {\displaystyle \int \limits _{a}^{b}|f(x)|dx} .

Теперь мы перейдем к изучению рядов, члены которых являются вещественными числами любого знака.

Определение 1. Будем называть ряд

абсолютно сходящимся, если сходится ряд

Заметим, что в этом определении ничего не сказано о том, предполагается ли при этом сходимость самого ряда (1.49). Оказывается, такое предположение оказалось бы излишним, ибо справедлива следующая теорема.

Теорема 1.9. Из сходимости ряда (1.50) вытекает сходимость ряда (1.49).

Доказательство. Воспользуемся критерием Коши для ряда (т. е. теоремой 1.1). Требуется доказать, что для любого найдется номер такой, что для всех номеров удовлетворяющих условию и для любого натурального справедливо неравенство

Фиксируем любое . Так как ряд (1.50) сходится, то в силу теоремы 1.1 найдется номер такой, что для всех номеров удовлетворяющих условию и для любого натурального справедливо неравенство

Так как модуль суммы нескольких слагаемых не превосходит суммы их модулей, то

Сопоставляя неравенства (1.52) и (1.53), получим неравенства (1.51). Теорема доказана.

Определение 2. Ряд (1.49) называется условно сходящимся, если этот ряд сходится, в то время как соответствующий ряд из модулей (1.50) расходится.

Примером абсолютно сходящегося ряда может служить ряд.

Этот ряд сходится абсолютно, ибо при сходится ряд (1.33).

Приведем пример условно сходящегося ряда. Докажем условную сходимость ряда

Так как соответствующий ряд из модулей (гармонический ряд), как мы уже знаем, расходится, то для доказательства условной сходимости ряда (1.54) достаточно доказать, что этот ряд сходится. Докажем, что ряд (1.54) сходится к числу . В п. 2 § 9 гл. 6 ч. 1 мы получили разложение по формуле Маклорена функции

Там же для всех х из сегмента получена следующая оценка остаточного члена.

Знакочередующийся ряд является частным случаем знакопеременного ряда.

Определение 2.2. Числовой ряд , члены которого после любого номера имеют разные знаки, называется знакопеременным .

Для знакопеременных рядов имеет место следующий общий достаточный признак сходимости .

Теорема 2.2. Пусть дан знакопеременный ряд

Если сходится ряд, составленный из модулей членов данного ряда

то сходится и сам знакопеременный ряд (2.2).

Надо отметить, что обратное утверждение неверно: если сходится ряд (2.2), то это не означает, что будет сходиться ряд (2.3).

Определение 2.3. абсолютно сходящимся , если ряд, составленный из модулей его членов, сходится.

Знакопеременный ряд называется условно сходящимся , если сам он сходится, а ряд, составленный из модулей его членов, расходится.

Среди знакопеременных рядов абсолютно сходящиеся ряды занимают особое место. Такие ряды обладают рядом свойств, которые сформулируем без доказательства.

Произведение двух абсолютно сходящихся рядов с суммами и есть абсолютно сходящийся ряд, сумма которого равна .

Таким образом, абсолютно сходящиеся ряды суммируются, вычитаются, перемножаются как обычные ряды. Суммы таких рядов не зависит от порядка записи членов.

В случае условно сходящихся рядов соответствующие утверждения (свойства), вообще говоря, не имеют места.

Так, переставляя члены условно сходящегося ряда, можно добиться того, что сумма ряда измениться. Например, ряд условно сходится по признаку Лейбница. Пусть сумма этого ряда равна . Перепишем его члены так, что после одного положительного члена будут идти два отрицательных. Получим ряд

Сумма уменьшилась вдвое!

Более того, путем перестановки членов условно сходящегося ряда можно получить сходящийся ряд с заранее заданной суммой или расходящийся ряд (теорема Римана).

Поэтому действия над рядами нельзя производить, не убедившись в их абсолютной сходимости. Для установления абсолютной сходимости используют все признаки сходимости числовых рядов с положительными членами, заменяя всюду общий член его модулем.

Пример 2.1. .

Решение. Исходный ряд знакопеременный. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда, т.е. ряд . Так как , то члены сходного ряда не больше членов ряда Дирихле , который, как известно, сходится. Следовательно, на основании признака сравнения данный ряд сходится абсолютно. ,

Пример 2.2. Исследовать на сходимость ряд .

Решение.

2) Рассмотрим ряд, составленный из абсолютных членов . Исследуем его на сходимость, используя признак Даламбера

По признаку Даламбера ряд, составленный из абсолютных членов, сходится. Значит, исходный знакочередующийся ряд сходится абсолютно. ,

Пример 2.3. Исследовать на сходимость ряд .

Решение. 1) Данный ряд знакочередующийся. Используем признак Лейбница. Проверим, выполняются ли условия.

Следовательно, исходный ряд сходится.

2) Рассмотрим ряд, составленный из абсолютных членов . Исследуем его на сходимость, используя предельный признак сравнения. Рассмотрим гармонический ряд , который расходится.

Следовательно, оба ряда ведут себя одинаково, т.е. ряд, составленный из абсолютных членов, тоже расходится. Значит, исходный знакочередующийся ряд сходится условно. ,

Знакочередующиеся ряды. Признак Лейбница.
Абсолютная и условная сходимость

Для того чтобы понять примеры данного урока необходимо хорошо ориентироваться в положительных числовых рядах: понимать, что такое ряд, знать необходимый признак сходимости ряда, уметь применять признаки сравнения, признак Даламбера, признаки Коши. Тему можно поднять практически с нуля, последовательно изучив статьи Ряды для чайников и Признак Даламбера. Признаки Коши . Логически этот урок является третьим по счёту, и он позволит не только разобраться в знакочередующихся рядах, но и закрепить уже пройденный материал! Какой-то новизны будет немного, и освоить знакочередующиеся ряды не составит большого труда. Всё просто и доступно.

Что такое знакочередующийся ряд? Это понятно или почти понятно уже из самого названия. Сразу простейший пример.

Рассмотрим ряд и распишем его подробнее:

А сейчас будет убийственный комментарий. У членов знакочередующегося ряда чередуются знаки: плюс, минус, плюс, минус, плюс, минус и т.д. до бесконечности.

Знакочередование обеспечивает множитель : если чётное, то будет знак «плюс», если нечётное – знак «минус» (как вы помните ещё с урока о числовых последовательностях , эта штуковина называется «мигалкой»). Таким образом, знакочередующийся ряд «опознается» по минус единичке в степени «эн».

В практических примерах знакочередование членов ряда может обеспечивать не только множитель , но и его родные братья: , , , …. Например:

Подводным камнем являются «обманки»: , , и т.п. – такие множители не обеспечивают смену знака . Совершенно понятно, что при любом натуральном : , , . Ряды с обманками подсовывают не только особо одаренным студентам, они время от времени возникают «сами собой» в ходе решения функциональных рядов .

Как исследовать знакочередующийся ряд на сходимость? Использовать признак Лейбница. Про немецкого гиганта мысли Готфрида Вильгельма Лейбница я рассказывать ничего не хочу, так как помимо математических трудов, он накатал несколько томов по философии. Опасно для мозга.

Признак Лейбница : Если члены знакочередующегося ряда монотонно убывают по модулю, то ряд сходится.

Или в два пункта:

1) Ряд является знакочередующимся.

2) Члены ряда убывают по модулю: , причём, убывают монотонно.

Если выполнены эти условия, то ряд сходится .

Краткая справка о модуле приведена в методичке Горячие формулы школьного курса математики , но для удобства ещё раз:

Что значит «по модулю»? Модуль, как мы помним со школы, «съедает» знак «минус». Вернемся к ряду . Мысленно сотрём ластиком все знаки и посмотрим на числа . Мы увидим, что каждый следующий член ряда меньше , чем предыдущий. Таким образом, следующие фразы обозначают одно и то же:

– Члены ряда без учёта знака убывают.
– Члены ряда убывают по модулю .
– Члены ряда убывают по абсолютной величине .
Модуль общего члена ряда стремится к нулю:

// Конец справки

Теперь немного поговорим про монотонность. Монотонность – это скучное постоянство.

Члены ряда строго монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю МЕНЬШЕ, чем предыдущий: . Для ряда выполнена строгая монотонность убывания, её можно расписать подробно:

А можно сказать короче: каждый следующий член ряда по модулю меньше, чем предыдущий: .

Члены ряда нестрого монотонно убывают по модулю, если КАЖДЫЙ СЛЕДУЮЩИЙ член ряда по модулю НЕ БОЛЬШЕ предыдущего: . Рассмотрим ряд с факториалом: Здесь имеет место нестрогая монотонность, так как первые два члена ряда одинаковы по модулю. То есть, каждый следующий член ряда по модулю не больше предыдущего: .

В условиях теоремы Лейбница должна выполняться монотонность убывания (неважно, строгая или нестрогая). Кроме того, члены ряда могут даже некоторое время возрастать по модулю , но «хвост» ряда обязательно должен быть монотонно убывающим.

Не нужно пугаться того, что я нагородил, практические примеры всё расставят по своим местам:

Пример 1

В общий член ряда входит множитель , и это наталкивает на естественную мысль проверить выполнение условий признака Лейбница:

1) Проверка ряда на знакочередование. Обычно в этом пункте решения ряд расписывают подробно и выносят вердикт «Ряд является знакочередующимся».

2) Убывают ли члены ряда по модулю? Здесь нужно решить предел , который чаще всего является очень простым.

– члены ряда не убывают по модулю, и из этого автоматически следует его расходимость – по той причине, что предела не существует *, то есть, не выполнен необходимый признак сходимости ряда .

Пример 9

Исследовать ряд на сходимость

Пример 10

Исследовать ряд на сходимость

После качественной проработки числовых положительных и знакопеременных рядов с чистой совестью можно перейти к функциональным рядам , которые не менее монотонны и однообразны интересны.